Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Public Underst Sci ; : 9636625241235375, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38555563

RESUMEN

As population-related climate change research increases, so does the need to nuance approaches to this complex phenomenon, including issues related to cultural and linguistic translations. To explore how climate change is understood in understudied societies, a case-study approach is taken to address social representations of climate change by inhabitants of a Maore village in the French island of Mayotte. The study explores how local fishers understand the issue when considering observed environmental changes. Based on analyses of 30 interviews, the study found that social representations and related climate change discourses are not well established, except for individuals in close contact with French institutions. Issues regarding local culture and language reveal the importance of understanding the different components of climate change. Climate change communication and awareness-raising on the island are explored, as well as considerations of culturally and linguistically complex settings with a Global North/Global South interface.

3.
Science ; 380(6650): 1155-1160, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37319199

RESUMEN

A global survey of coral reefs reveals that overfishing is driving resident shark species toward extinction, causing diversity deficits in reef elasmobranch (shark and ray) assemblages. Our species-level analysis revealed global declines of 60 to 73% for five common resident reef shark species and that individual shark species were not detected at 34 to 47% of surveyed reefs. As reefs become more shark-depleted, rays begin to dominate assemblages. Shark-dominated assemblages persist in wealthy nations with strong governance and in highly protected areas, whereas poverty, weak governance, and a lack of shark management are associated with depauperate assemblages mainly composed of rays. Without action to address these diversity deficits, loss of ecological function and ecosystem services will increasingly affect human communities.


Asunto(s)
Conservación de los Recursos Naturales , Arrecifes de Coral , Extinción Biológica , Tiburones , Rajidae , Animales , Humanos , Explotaciones Pesqueras , Biodiversidad
4.
Proc Biol Sci ; 288(1959): 20211574, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34583586

RESUMEN

Generating genomic data for 19 tropical reef fish species of the Western Indian Ocean, we investigate how species ecology influences genetic diversity patterns from local to regional scales. We distinguish between the α, ß and γ components of genetic diversity, which we subsequently link to six ecological traits. We find that the α and γ components of genetic diversity are strongly correlated so that species with a high total regional genetic diversity display systematically high local diversity. The α and γ diversity components are negatively associated with species abundance recorded using underwater visual surveys and positively associated with body size. Pelagic larval duration is found to be negatively related to genetic ß diversity supporting its role as a dispersal trait in marine fishes. Deviation from the neutral theory of molecular evolution motivates further effort to understand the processes shaping genetic diversity and ultimately the diversification of the exceptional diversity of tropical reef fishes.


Asunto(s)
Arrecifes de Coral , Peces , Animales , Biodiversidad , Tamaño Corporal , Evolución Molecular , Peces/genética , Variación Genética
5.
Sci Rep ; 10(1): 14846, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32884094

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
Nature ; 583(7818): 801-806, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32699418

RESUMEN

Decades of overexploitation have devastated shark populations, leaving considerable doubt as to their ecological status1,2. Yet much of what is known about sharks has been inferred from catch records in industrial fisheries, whereas far less information is available about sharks that live in coastal habitats3. Here we address this knowledge gap using data from more than 15,000 standardized baited remote underwater video stations that were deployed on 371 reefs in 58 nations to estimate the conservation status of reef sharks globally. Our results reveal the profound impact that fishing has had on reef shark populations: we observed no sharks on almost 20% of the surveyed reefs. Reef sharks were almost completely absent from reefs in several nations, and shark depletion was strongly related to socio-economic conditions such as the size and proximity of the nearest market, poor governance and the density of the human population. However, opportunities for the conservation of reef sharks remain: shark sanctuaries, closed areas, catch limits and an absence of gillnets and longlines were associated with a substantially higher relative abundance of reef sharks. These results reveal several policy pathways for the restoration and management of reef shark populations, from direct top-down management of fishing to indirect improvement of governance conditions. Reef shark populations will only have a high chance of recovery by engaging key socio-economic aspects of tropical fisheries.


Asunto(s)
Conservación de los Recursos Naturales/estadística & datos numéricos , Arrecifes de Coral , Ecosistema , Explotaciones Pesqueras/economía , Explotaciones Pesqueras/estadística & datos numéricos , Tiburones/fisiología , Animales , Mapeo Geográfico , Densidad de Población , Factores Socioeconómicos
8.
Sci Rep ; 10(1): 10972, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620873

RESUMEN

Processing data from surveys using photos or videos remains a major bottleneck in ecology. Deep Learning Algorithms (DLAs) have been increasingly used to automatically identify organisms on images. However, despite recent advances, it remains difficult to control the error rate of such methods. Here, we proposed a new framework to control the error rate of DLAs. More precisely, for each species, a confidence threshold was automatically computed using a training dataset independent from the one used to train the DLAs. These species-specific thresholds were then used to post-process the outputs of the DLAs, assigning classification scores to each class for a given image including a new class called "unsure". We applied this framework to a study case identifying 20 fish species from 13,232 underwater images on coral reefs. The overall rate of species misclassification decreased from 22% with the raw DLAs to 2.98% after post-processing using the thresholds defined to minimize the risk of misclassification. This new framework has the potential to unclog the bottleneck of information extraction from massive digital data while ensuring a high level of accuracy in biodiversity assessment.

9.
Proc Biol Sci ; 287(1927): 20200642, 2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32396801

RESUMEN

Coral reefs host hundreds of thousands of animal species that are increasingly threatened by anthropogenic disturbances. These animals host microbial communities at their surface, playing crucial roles for their fitness. However, the diversity of such microbiomes is mostly described in a few coral species and still poorly defined in other invertebrates and vertebrates. Given the diversity of animal microbiomes, and the diversity of host species inhabiting coral reefs, the contribution of such microbiomes to the total microbial diversity of coral reefs could be important, yet potentially vulnerable to the loss of animal species. Analysis of the surface microbiome from 74 taxa, including teleost fishes, hard and soft corals, crustaceans, echinoderms, bivalves and sponges, revealed that more than 90% of their prokaryotic phylogenetic richness was specific and not recovered in surrounding plankton. Estimate of the total richness associated with coral reef animal surface microbiomes reached up to 2.5% of current estimates of Earth prokaryotic diversity. Therefore, coral reef animal surfaces should be recognized as a hotspot of marine microbial diversity. Loss of the most vulnerable reef animals expected under present-day scenarios of reef degradation would induce an erosion of 28% of the prokaryotic richness, with unknown consequences on coral reef ecosystem functioning.


Asunto(s)
Biodiversidad , Arrecifes de Coral , Microbiota , Microbiología del Agua , Animales , Filogenia
10.
Biol Lett ; 15(11): 20190703, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31744414

RESUMEN

Cultural and recreational values of biodiversity are considered as important dimensions of nature's contribution to people. Among these values, the aesthetics can be of major importance as the appreciation of beauty is one of the simplest forms of human emotional response. Using an online survey, we disentangled the effects of different facets of biodiversity on aesthetic preferences of coral reef fish assemblages that are among the most emblematic assemblages on Earth. While we found a positive saturating effect of species' richness on human preference, we found a net negative effect of species abundance, no effect of species functional diversity and contrasting effects of species composition depending on species' attractiveness. Our results suggest that the biodiversity-human interest relationship is more complex than has been previously stated. By integrating several scales of organization, our study is a step forward in better evaluating the aesthetic value of biodiversity.


Asunto(s)
Arrecifes de Coral , Peces , Animales , Biodiversidad , Ecosistema , Estética
11.
Sci Rep ; 8(1): 11733, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-30082795

RESUMEN

The biodiversity crisis has spurred scientists to assess all facets of biodiversity so that stakeholders can establish protection programs. However, species that are perceived as beautiful receive more attention than less attractive species. This dynamic could have tremendous consequences on people's willingness to preserve biodiversity. Coral reefs might be particularly affected by this issue as they are key ecosystems that provide many services, such as aesthetic and cultural benefits attracting millions of tourists each year. Here we show the results of an online photographic questionnaire completed by 8,000 participants whereby preferences were assessed for a set of 116 reef fishes. Based on these preferences, we compared the functional richness, i.e. the amount of functional space filled, by groups of fishes based on their perceived attractiveness. We present evidence indicating that the least attractive coral reef fishes have a much higher functional richness than the most attractive species. Our results highlight the extent to which species aesthetic values' may be disconnected from their ecological values and could be misleading for conservation purposes. There is thus an urgent need to increase the attention of scientists and the general public towards less attractive species to better appreciate and protect the species that crucially support functional diversity in endangered ecosystems.


Asunto(s)
Peces , Animales , Arrecifes de Coral , Ecología , Ecosistema , Encuestas y Cuestionarios
12.
Microbiome ; 6(1): 147, 2018 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-30143055

RESUMEN

BACKGROUND: The surface of marine animals is covered by abundant and diversified microbial communities, which have major roles for the health of their host. While such microbiomes have been deeply examined in marine invertebrates such as corals and sponges, the microbiomes living on marine vertebrates have received less attention. Specifically, the diversity of these microbiomes, their variability among species, and their drivers are still mostly unknown, especially among the fish species living on coral reefs that contribute to key ecosystem services while they are increasingly affected by human activities. Here, we investigated these knowledge gaps analyzing the skin microbiome of 138 fish individuals belonging to 44 coral reef fish species living in the same area. RESULTS: Prokaryotic communities living on the skin of coral reef fishes are highly diverse, with on average more than 600 OTUs per fish, and differ from planktonic microbes. Skin microbiomes varied between fish individual and species, and interspecific differences were slightly coupled to the phylogenetic affiliation of the host and its ecological traits. CONCLUSIONS: These results highlight that coral reef biodiversity is greater than previously appreciated, since the high diversity of macro-organisms supports a highly diversified microbial community. This suggest that beyond the loss of coral reefs-associated macroscopic species, anthropic activities on coral reefs could also lead to a loss of still unexplored host-associated microbial diversity, which urgently needs to be assessed.


Asunto(s)
Bacterias/clasificación , Peces/microbiología , Metagenómica/métodos , Análisis de Secuencia de ADN/métodos , Alimentación Animal , Animales , Bacterias/genética , Biodiversidad , Arrecifes de Coral , Peces/clasificación , Humanos , Microbiota , Filogenia , Plancton/microbiología , ARN Ribosómico 16S/genética , Piel/microbiología , Especificidad de la Especie
13.
PLoS One ; 9(11): e112732, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25409027

RESUMEN

Tropical reef fishes are widely regarded as being perhaps the most morphologically diverse vertebrate assemblage on earth, yet much remains to be discovered about the scope and patterns of this diversity. We created a morphospace of 2,939 species spanning 56 families of tropical Indo-Pacific reef fishes and established the primary axes of body shape variation, the phylogenetic consistency of these patterns, and whether dominant patterns of shape change can be accomplished by diverse underlying changes. Principal component analysis showed a major axis of shape variation that contrasts deep-bodied species with slender, elongate forms. Furthermore, using custom methods to compare the elongation vector (axis that maximizes elongation deformation) and the main vector of shape variation (first principal component) for each family in the morphospace, we showed that two thirds of the families diversify along an axis of body elongation. Finally, a comparative analysis using a principal coordinate analysis based on the angles among first principal component vectors of each family shape showed that families accomplish changes in elongation with a wide range of underlying modifications. Some groups such as Pomacentridae and Lethrinidae undergo decreases in body depth with proportional increases in all body regions, while other families show disproportionate changes in the length of the head (e.g., Labridae), the trunk or caudal region in all combinations (e.g., Pempheridae and Pinguipedidae). In conclusion, we found that evolutionary changes in body shape along an axis of elongation dominates diversification in reef fishes. Changes in shape on this axis are thought to have immediate implications for swimming performance, defense from gape limited predators, suction feeding performance and access to some highly specialized habitats. The morphological modifications that underlie changes in elongation are highly diverse, suggesting a role for a range of developmental processes and functional consequences.


Asunto(s)
Arrecifes de Coral , Evolución Molecular , Peces/anatomía & histología , Animales , Tamaño Corporal , Ecosistema , Peces/fisiología , Filogenia , Especificidad de la Especie , Clima Tropical
14.
Evolution ; 68(7): 1919-33, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24635148

RESUMEN

Mechanical redundancy within a biomechanical system (e.g., many-to-one mapping) allows morphologically divergent organisms to maintain equivalent mechanical outputs. However, most organisms depend on the integration of more than one biomechanical system. Here, we test whether coupled mechanical systems follow a pattern of amplification (mechanical changes are congruent and evolve toward the same functional extreme) or independence (mechanisms evolve independently). We examined the correlated evolution and evolutionary pathways of the coupled four-bar linkage and lever systems in mantis shrimp (Stomatopoda) ultrafast raptorial appendages. We examined models of character evolution in the framework of two divergent groups of stomatopods-"smashers" (hammer-shaped appendages) and "spearers" (bladed appendages). Smashers tended to evolve toward force amplification, whereas spearers evolved toward displacement amplification. These findings show that coupled biomechanical systems can evolve synergistically, thereby resulting in functional amplification rather than mechanical redundancy.


Asunto(s)
Crustáceos/genética , Evolución Molecular , Animales , Fenómenos Biomecánicos/genética , Crustáceos/fisiología , Filogenia , Conducta Predatoria
15.
Evolution ; 67(11): 3191-207, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24152002

RESUMEN

The dynamic interplay among structure, function, and phylogeny form a classic triad of influences on the patterns and processes of biological diversification. Although these dynamics are widely recognized as important, quantitative analyses of their interactions have infrequently been applied to biomechanical systems. Here we analyze these factors using a fundamental biomechanical mechanism: power amplification. Power-amplified systems use springs and latches to generate extremely fast and powerful movements. This study focuses specifically on the power amplification mechanism in the fast raptorial appendages of mantis shrimp (Crustacea: Stomatopoda). Using geometric morphometric and phylogenetic comparative analyses, we measured evolutionary modularity and rates of morphological evolution of the raptorial appendage's biomechanical components. We found that "smashers" (hammer-shaped raptorial appendages) exhibit lower modularity and 10-fold slower rates of morphological change when compared to non-smashers (spear-shaped or undifferentiated appendages). The morphological and biomechanical integration of this system at a macroevolutionary scale and the presence of variable rates of evolution reveal a balance between structural constraints, functional variation, and the "roles of development and genetics" in evolutionary diversification.


Asunto(s)
Evolución Biológica , Crustáceos/anatomía & histología , Crustáceos/fisiología , Conducta Predatoria , Animales , Fenómenos Biomecánicos , Extremidades/anatomía & histología , Extremidades/fisiología , Filogenia
16.
J Exp Biol ; 215(Pt 7): 1231-45, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22399669

RESUMEN

The geometry of an animal's skeleton governs the transmission of force to its appendages. Joints and rigid elements that create a relatively large output displacement per unit input displacement have been considered to be geared for speed, but the relationship between skeletal geometry and speed is largely untested. The present study explored this subject with experiments and mathematical modeling to evaluate how morphological differences in the raptorial appendage of a mantis shrimp (Gonodactylus smithii) affect the speed of its predatory strike. Based on morphological measurements and material testing, we computationally simulated the transmission of the stored elastic energy that powers a strike and the drag that resists this motion. After verifying the model's predictions against measurements of strike impulse, we conducted a series of simulations that varied the linkage geometry, but were provided with a fixed amount of stored elastic energy. We found that a skeletal geometry that creates a large output displacement achieves a slower maximum speed of rotation than a low-displacement system. This is because a large displacement by the appendage causes a relatively large proportion of its elastic energy to be lost to the generation of drag. Therefore, the efficiency of transmission from elastic to kinetic energy mediates the relationship between the geometry and the speed of a skeleton. We propose that transmission efficiency plays a similar role in form-function relationships for skeletal systems in a diversity of animals.


Asunto(s)
Decápodos/fisiología , Movimiento/fisiología , Conducta Predatoria/fisiología , Animales , Simulación por Computador , Decápodos/anatomía & histología , Metabolismo Energético/fisiología , Modelos Biológicos , Análisis de Regresión , Torque , Microtomografía por Rayos X
18.
Evolution ; 65(2): 443-61, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20840593

RESUMEN

Extremely fast animal actions are accomplished with mechanisms that reduce the duration of movement. This process is known as power amplification. Although many studies have examined the morphology and performance of power-amplified systems, little is known about their development and evolution. Here, we examine scaling and modularity in the powerful predatory appendages of a mantis shrimp, Gonodactylaceus falcatus (Crustacea, Stomatopoda). We propose that power-amplified systems can be divided into three units: an engine (e.g., muscle), an amplifier (e.g., spring), and a tool (e.g., hammer). We tested whether these units are developmentally independent using geometric morphometric techniques that quantitatively compare shapes. Additionally, we tested whether shape and several mechanical features are correlated with size and sex. We found that the morphological regions that represent the engine, amplifier, and tool belong to independent developmental modules. In both sexes, body size was positively correlated with the size of each region. Shape, however, changed allometrically with appendage size only in the amplifier (both sexes) and tool (males). These morphological changes were correlated with strike force and spring force (amplifier), but not spring stiffness (amplifier). Overall, the results indicate that each functional unit belongs to different developmental modules in a power-amplified system, potentially allowing independent evolution of the engine, amplifier, and tool.


Asunto(s)
Evolución Biológica , Crustáceos/anatomía & histología , Crustáceos/genética , Animales , Fenómenos Biomecánicos , Tamaño Corporal , Crustáceos/fisiología , Femenino , Masculino , Movimiento , Caracteres Sexuales
19.
Proc Biol Sci ; 274(1628): 3033-8, 2007 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-17911054

RESUMEN

The squat lobster Munida rugosa has an unusual chela dimorphism exhibited mainly by large males. Some individuals have 'arched' chelae in which there is a gap between the dactylus and the pollex when closed, and others have a 'straight' morphology in which the dactylus and pollex oppose along most of their length. Geometric morphometric analysis indicated that, compared with males, the arched morphology does not develop fully in females, so further investigation was confined to males. In males, the distal part of the chela was similar in both the forms and seemed to be adapted to hold and shred prey items. Both morphologies had a major cylindrical tooth on the inner proximal part of the dactylus, but the arched morphology had a higher and wider propodus, a greater major tooth-pollex distance and a greater force generation than the straight morphology. The findings suggest that the arched chela morphology in M. rugosa is a sexually selected trait adapted to inflict puncture wounds on opponents during agonistic interactions. The arched morphology, therefore, appears to have evolved in males by means of sexual selection because it enhanced the function of the chela as a weapon, while retaining functionality for feeding.


Asunto(s)
Conducta Agonística , Anomuros/anatomía & histología , Adaptación Fisiológica , Animales , Anomuros/fisiología , Fenómenos Biomecánicos , Conducta Competitiva , Femenino , Masculino , Preferencia en el Apareamiento Animal , Caracteres Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...